## Helpful Formulas

Age Predicted Maximum Heart Rate (MHR)

```
220 - Age = MHR
MHR x \% intensity = Target Heart Rate (THR)
```

| Example: | 34 year old at $75 \%$ intensity |
| :--- | :--- |
| $220-34=186 \times 0.75=139.5 \mathrm{bpm}$ |  |

## Karvonen Formula - Heart Rate Reserve (HRR)

```
220 - Age = MHR
MHR - Resting Heart Rate = HRR
(HRR x % intensity) + RHR = THR
Example: \(\quad 34\) year old, resting heart rate \(=62 \mathrm{bpm}\), at \(75 \%\) intensity \(220-34=186-62=124 \times 0.75=93+62=155 \mathrm{bpm}\)
```


## Body Mass Index (BMI)

Weight (kg) $\div$ Height $^{2}$ (m)
Weight conversion:
weight in $\mathrm{lb} \div 2.2=$ weight in kg
Height conversion: (height in inches x 2.54 ) $\div 100=$ height in meters

$$
\begin{array}{ll}
\text { Example: } &
\end{array}
$$

## Desired Body Weight (DBW)

| DBW $=$ LBW $\div(1-\mathrm{DBF} \%)$ |  |
| :---: | :---: |
| Step 1: $100 \%$ - Fat \% = Lean body \% |  |
| Step 2: Body weight x Lean body \% = LBW |  |
| Step 3: 100\% - Desired fat \% = Desired lean \% |  |
| Step 4: LBW $\div$ Desired lean \% = DBW |  |
| Example: | 200 lb individual with $30 \%$ body fat. |
|  | How much will he/she weigh at 25 \% body fat? |
|  | - $100 \%-30 \%=70 \%$ |
|  | - $200 \mathrm{lb} \times 0.70=140 \mathrm{lb}$ LBW |
|  | - $100 \%-25 \%=75 \%$ |
|  | - $140 \mathrm{lb} \div 0.75=187 \mathrm{DBW}$ |

Caloric (kcal) Values per Gram (g)

| Fat $=9 \mathrm{kcal} / \mathrm{g}$ | Alcohol $=7 \mathrm{kcal} / \mathrm{g}$ |
| :--- | :--- |
| Carbohydrates $=4 \mathrm{kcal} / \mathrm{g}$ | Protein $=4 \mathrm{kcal} / \mathrm{g}$ |

This is not a complete list of all the formulas you may need for the ACE Personal Trainer Exam.

## Math Tips

## Multiplying by a percent

When multiplying by decimals, remember to move the decimal point 2 places to the left in your final answer.
For example: To find your client's body fat weight, multiply her total body weight (150 lb) by her body fat percent (30 \%).

## Dividing by a percent

When dividing by a percent, move the decimal point over 2 places to the right before you start long division.
For example: Your client currently weighs 150 lb and is $30 \%$ body fat. You know her lean body weight is 105 lb and her desired percent body fat is $20 \%$. To find her new ideal body weight at $20 \%$ body fat, you must divide 105 lb by her new ideal lean body weight percent, which equals $80 \%$ or 0.80 in decimal form.

First, you set up the division equation as...

$$
0 . 8 0 \longdiv { | 1 0 5 . 0 0 }
$$

Then you will have to move the decimal points two places to the right and divide as follows...

$$
\begin{aligned}
& \frac{131.25}{80} \frac{10500.00}{-80} \\
& \frac{-250}{-240} \\
& \frac{-80}{200} \\
& \frac{-160}{400} \\
& \underline{-400}
\end{aligned}
$$

## Finding the percent of a whole

When dividing a bigger number into a smaller number, you must add a decimal point and at least 2 zeros at the end of the smaller number. Be sure to extend the decimal point to your answer - writing your answer to the right of the decimal point since it will ultimately be a percent of the whole.
For example: You notice on a food label that the item has 90 calories per serving and 3 grams of fat per serving. What percent of calories from this serving of food comes from fat?

First, you must convert grams of fat into calories so you can work with the same units in your equation: $9 \mathrm{cal} / \mathrm{g}$ fat x 3 g fat $=27 \mathrm{cal}$ fat

$$
\begin{gathered}
\frac{.30}{27.00} \\
\underline{-270}
\end{gathered}
$$

